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Four algorithms for evaluating period-doubling bifurcation points in periodic solutions. of
autonomous systems of ordinary differential equations are presented. Two of the algorithms
can also be used for nonautonomous systems. The algorithms are applied to three examples:
two interconnected reaction cells, the Lorenz model and a reactor with periodic forcing. Con-
vergence properties of the algorithms are shown and a number of computed bifurcation points
are presented. Convergence of the Feigenbaum sequence is shown for a period-doubling
cascade in the Lorenz model.  © 1987 Academic Press, Inc.

1. INTRODUCTION

Numerical methods in the bifurcation theory of nonlinear dynamic systems are
currently the subject of much attention. Methods for investigating branching of
stationary solutions (including Hopf’s bifurcations) are found in [1-4].

A continuation algorithm for construction of the dependence of periodic
solutions on a parameter is described in [5]. The branching of periodic solutions is
reviewed by Sattinger [6] and discussed in [7]. Numerical methods for deter-
mination of branching points of periodic solutions are studied by Becker and Seydel
[8] in the case of the limit point and by the present authors {97 in the case of the
point of period-doubling bifurcation.

Several authors have evaluated the cascade of period-doubling bifurcations on
the stable branch by means of sequentially applied dynamic simulation [10-127 in
order to verify Feigenbaum’s theory [13-157 in connection with the transition to
chaotic behaviour of the system.

2. DEVELOPMENT OF ALGORITHMS FOR AUTONOMOUS SYSTEMS

Consider an autonomous system of ordinary differential equations

dy; .
Et_:.fi(yla-“a Vs a)’ l=1> 2""9 n, (1)
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depending on a parameter a. A periodic solution with period T satisfies
ylt+T)=yf1), i=L2.,n (2)
Substituting = 77 in (1) generates a system of equations

dy;

—“— =T Vi ¥ | =
dZ .fl(yU s Vs a): l 13 27 s 1, (3)

with mixed boundary conditions in the form
y{1)—y{0)=0, i=1,2,.,n 4
For the shooting method choose initial conditions
y{0)=x,, i=1,2,..n (5)

as well as values of the period 7 and the parameter «. Then system (3) is integrated
from z=0 to z=1. Values of the solution at z=1 are expressed as

yi)= X1y X, T, 1), i=1,2,.,n (6)

Relation {4) has to be valid for any periodic solution. Hence, we have to satisfy n
equations

Fi(x iy Xp Ty a) =@ X100y X, T, 0) — X, =0, i=1,2,.,n, (7)

with n+ 1 unknowns xi,.., x,, 7, and one parameter a. To obtain a periodic
solution for a fixed « assign a value to x, for some k£ [5]. The period T cannot be
assigned because the solution of Eqgs. (7) exists for discrete (and a priori unknown)
values of T only. The procedure will be successful if the chosen value actually exists
on the trajectory of the kth component of the desired periodic solution y.(z),
ze [0, 1)

Stability of the computed periodic solution is determined on the basis of Floquet
(characteristic) multipliers, (see [7]), which are the eigenvalues A of the
monodromy matrix

B={0¢,/0x,}. (8)

Elements of the monodromy matrix (and values of 8F;/0x; in (7)) are evaluated on
the basis of variational differential equations for variational variables

pi2)=2y,/0x,, i j=1.,n (9)

These differential equations obtained by differentiating Egs. (3) with respect to x;,
are in the form

ap; & 0f;
dZ Tlgl ay[ plp sz( ) if ( )
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Fic. 1. Schematic representation of bifurcation at the point of period-doubling. ( } stable
periodic solutions, (- - -} unstable periodic solutions. A is the amplitude or other representative valoe of
the periodic solution.

(8, is the Kronecker delta). For elements of the monodromy matrix we have
B={p, (1)} (113

Consider a branch of periodic solutions which depend on the value of parameter
. Stability of the periodic solutions may change at the bifurcation value of
parameter « where a certain characteristic multiplier of the corresponding periodic
solution lies on the unit circle. This multiplier will be either +1, or —1, or
imaginary. The first case corresponds to limit (turning) points or bifurcation
{crossection, symmetry breaking) points on dependence curves of periodic solutions
on a parameter. The third case mostly indicates a bifurcation to an invariant forus.
Here we shall deal with the second case, that is, with the period-doubling bifur-
cation points. At this point (where the characteristic multiplier passes through —1)
a new branch of periodic solutions bifurcates with the period which has
approximately (asymptotically) doubled in comparison with the period on the
original branch. The situation is schematically shown on Fig. 1; more detailed
explanation in {7].

The goal of this paper is to construct computational algorithms for direct
(iterative) determination of period-doubling bifurcation points. We will determine a
pericdic solution whose characteristic multiplier is —1. In the following we describe
four iterative algorithms constructed for this purpose.

Algorithm 1
Let the characteristic polynomial of the monodromy matrix B be P{l)=
{—1)y"det{B—1l), ie,
PRYy=A"+a, A" " a4 o ta, Ata,. (123

The coefficients a; are evaluated by the Krylov method [16]. A= -1 is the root of
the characteristic polynomial (12) if

F,,H(xl,...,xn,T,oc)———l—&-Z (—1Ya, =0 {13)
i=1

As a result we obtain n+ 1 nonlinear (algebraic) equations (7) and (13) for n+1
UNKNOWNS X,y Xg gy Xgo 1m0 Xy, Ty 0. The Newton method is used to solve this
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system. The first n rows of the Jacobi matrix are evaluated on the basis of the
variational variables,

OF; oF;

a—x—j_pl-j(l)~5,-j, ﬁ—fi(J/(I): a),

JF;

T—q(l) i=1,2:---> n, (14)

where the variational variables p; and ¢; = 0y, /0 satisty variational equations (10)
and

dz

dqi - T[ gf l +§£:I’ q1(0)=0’ l= 1, 2,..., . (15)
Ji

The elements of the last row of the Jacobi matrix 0F, , {/0x;, 6F,, /0T, OF, . /0u

are cvaluated by means of difference formulas. An “analytical” method using

variational variables is also possible. However, it is very cumbersome for large n.
The proposed algorithm:

(1) Choose initial estimates of xy.,..., x,,, 7, o. The value of x, remains fixed in
the iteration process.

(2) Integrate the set of n(n+ 2) differential equations (3), (10), (15) with the
corresponding initial conditions from z=0 to z= 1. Evaluate residuals F,.., F,
according to (7) and (13). Evaluate the first n rows of the Jacobi matrix according
to Egs. (14).

(3) Evaluate the last row of the Jacobi matrix by means of finite differences.
The above mentioned set of n(n + 2) differential equations must be integrated » + 1
times to obtain the finite difference approximations. Equations (15) are not
integrated in this step.

(4) Compute next Newton iteration. If the prescribed accuracy is not fulfilled,
go to step (2).

Algorithm 11

The characteristic polynomial (12) must have one root equal to unity because we
consider the periodic solution of the autonomous system (3) (e.g., [7, 171). The
polynomial (12) can be decomposed into the form

P(A)=(A+1)(A—-1)(2" 2+ p, 2”77
+ AP At p, )+ CA+D, (16)
where the coefficients p,,..., p,_,, C, D are evaluated recursively:
Py =4a,; pr=a,+1; P =0+ Pr_2, k=3,4,.,n~2;

(17)
C=a,,~1 +pn—37 D=an +pn~2'
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Determining the periodic solution, given that C=0 and D =0, produces a period-
doubling bifurcation point. Therefore, two additional equations

F, (X X, T,0)=C =0 {18)
and
Fn+2(xl>"'= Xus T, !X)'—:DZ‘—O {19)

are to be satisfied at such a bifurcation point. As a result we obtain # + 2 nonlinear
equations for n+ 1 unknowns. Use the Gauss-Newton iteration method (see, ¢.g,
187) to solve this system. The Gauss~Newton method seeks the minimum of the
function

n+2
(X oy Xy Tyay= Y FHX oy x,,, T, 1) (20)

i=1

In case the obtained minimum is zero, the results correspond to a period-doubling
bifurcation point. The Jacobi matrix of the system is needed for application of the
Gauss—Newton method analogously to Algorithm I. Here we compute the two last
rows of the (n+2)x(n+1) Jacobi matrix by means of finite differences. The
algorithm is quite analogous to Algorithm I. Now evaluate n + 2 residuals (7}, (18),
(19} instead of »+ 1 residuals as in Algorithm I. Note that 7, | in Eq. (13) is equal
to D—C or C— D for n even or odd, respectively.

Algorithm U1

The algorithm is based on the same decomposition (16) as Algorithm I1.
Recurrence relations (17) are also valid. Instead of two equations (18), (19) we add
only one equation

Fn+1(x1a"-7xn’ T)“):DZO {213

As a result we have a system of n+ 1 nonlinear equations {7), (21) for a+1
unknowans. The Newton method is used as in Algorithm I. If a solution of Egs. (7),
(21) 1s found, it is a periodic solution of (3), P(A) has +1 as a root and, therefore,
the left-hand side in Eq. (16) is divisible by (1 — 1). The first term on the right-hand
side of (16} is also divisible by (1 —1). Therefore CA+ D must also be divisible by
(A—1). From the validity D =0 it follows that C = 0. Numerical realization of the
Newton method is quite analogous to Algorithm I. We can use Eq. {(18) instead of
Eq. (21) and thus form a modified Algorithm II1.

Algorithm IV

The monodromy matrix B has —1 as an eigenvalue at the period-doubling bifur-
cation point, i.e., there exists a nonzero vector v=(v,,.., v,) such that

(B+Do=0. (22)
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X Xyq X X Tle VimVg1Vge1Vn
Eqs.(7) @* @ @ 0
. X %
Egs.(22) X X[ x @

FiG. 2. The occurrence matrix for the 2n x 2n system (7), (22) in Algorithm IV. (*) matrix B—1
without kth column, (**) matrix B+ I without sth column.

Each nonzero multiple of the vector v is also a solution of Eq.(22). We can,
therefore, permanently fix one component of the vector v, e.g.,

v, =1, se[l, n]. (23)

As a result we obtain 2r equations (7), (22) for 27 unknowns X ..., Xx_ 1, Xi 4 gsees
Xyo Ty 0 Ufyery Ug_qs Usy gy D, The Newton method is used to solve this 2n x 2n
system. The occurrence matrix (the structure of the Jacobi matrix) is shown in
Fig. 2, where the elements, which can be easily evaluated by using the variational
variables, are denoted by a circle.

3. ALGORITHMS FOR NONAUTONOMOUS SYSTEMS

The system (1) presented above is autonomous. The situation in nonautonomous
systems is very similar. Consider a system

Y iy =120, (24)

where functions f; are periodic in time ¢ with a known period T. Then periodic
solutions of Egs. (24) with only periods mT, m a positive integer, can exist. Thus,
we have

yAmT)— y£0}=0, i=12,..,n, (25)

instead of Eq. (4). After choosing the initial conditions (5) and integrating from
t=0 to t=mT we obtain, similarly to Eq. (6),

yt(mT) = ¢i(x19"~5 Xus (x)a i= 19 2:-"9 n. (26)
Equations
FAX yors Xy 8) = QX1 5oy Xy ) — X, =0, i=1,2,.,n (27)

have to be satisfied for the periodic solution with the period mT. The stability of the
periodic solution is governed by eigenvalues of the matrix B in (8), the elements of
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which can be evaluated by using variational equations similar to Egs. (10). The
only difference is that 1=1 need not be the eigenvalue of B for nonautonomous
systems (more precisely: B has 1| as eigenvalue at bifurcation points, e.g., limit
points). From this point of view it is clear that only AlgorithmsI and IV can be
used for evaluation of period-doubling bifurcation points in nonautonomous
systems. A branch of periodic solutions with the period 2m7 then branches off at
such points.

4. APPLICATIONS
We shall demonstrate the effectiveness of the algorithms on three examples.

Exampre 1. Consider two interconnected well-mixed cells where chemical reac-
tions take place. The Brusselator model chemical reaction scheme has been chosen
[191.

The governing equations have the following form [20], n=4:

dy
7{5=A—(B+1)y1+y%yz+<x(y3~y1),
dy o
—df— =By, — yiy, + (¥4 — 12),
(28}
Ds 4 (Bl 2
P —(B+ 1) ys + yiya +oly; — y3)
dy o
7;—‘=By3~y§y4+—p~(yz—y4)-

Here A, B, p, and « are parameters of the problem, the values 4 =2, B=359,
p=0.1 are used in computations, « is considered as the bifurcation parameter (it
characterizes mass transfer coefficient).

ExampiE 2. The Lorenz model [21]. The governing equations are in the form

91&20. —0C

dr Y2 Yis

dy

'_‘dt2=’Y1—J’1)’3*‘Y2a (29)
sy

di Y1)2 Ys3-

The Rayleigh number r is considered as the bifurcation parameter «, the remaining
parameters are set ¢ =16, 5=4 (see, e.g., [22,237).
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TABLE I
Examples of Convergence of Algorithms I-1II, Example 1, i.e, Model (28)

Algorithm Iteration X, X3 X4 T o I F|i?
1 0 4.2 0.89 44 4.05 117 TE-3

1 4.19770 0.88832 4.44148 4.05079 117189 2E-5

2 4.19845 0.88835 4.44238 4.05146 1.17201 6F-11

3 4.19846 0.88835 4.44239 4.05146 1.17201 3E-19

IT 0 4.2 0.89 4.4 4.05 1.17 1E-2¢
1 4.19676 0.88849 4.44084 4.05076 1.17186 3E-5

2 4.19845 0.88835 4.44238 4.05146 1.17201 1E-10

3 4.19846 0.88835 4.44239 4.05146 1.17201 TE-19

I 0 4.2 0.89 4.4 4.05 1.17 1E-2
1 4.19856 0.88848 4.44238 4.05169 1.17201 1E-5

2 4.19846 0.88835 4.44239 4.05146 1.17201 1E-11

3 4.19846 0.88835 4.44239 4.05146 1.17201 6E-22

4 Equal to ¢ in Eq. (20).
Note. Values k=1 and x, =2 have been fixed. Initial guess taken from the results of continuation of
periodic solutions. Point 6 (cf. Table IIT and Fig. 4) is obtained by all three algorithms.

ExampLE 3. The third model is nonautonomous. A well-mixed reactor with the
Brusselator chemical reaction and external periodic forcing is described by the
system of two differential equations [24, 257,

d
_zi)jti:y%yzﬁ(B-f—l)yl + A+ o sin o,

(30)
4> _p
di V1= Vi)V

Here o is the bifurcation parameter (amplitude of external forcing) and A4 =2,
B=6, w=3 are chosen parameter values. Evidently the period is
T=2mn/w =2.094395.

All computations are in single precision arithmetic (~ 14 decimal digits) on the
computer CYBER 175. Examples of the course of the Newton method (Algorithms
I-1IT) for the problem (28) are shown in Table1, for Algorithm IV in Table IL
Initial guesses originated approximately from the results of continuation of periodic
solutions in dependence on the parameter «. Results of one such continuation [26]
(obtained by the DERPER algorithm described in [5]) are presented in Fig, 3.
Four period-doubling bifurcation points exist on the isolated and closed depen-
dence curve of periodic solutions on the parameter . They are presented in
Table 111 as points 1-4. Every bifurcation points is presented four times because the
course of y,(z), ze [0, 1), intersects four times the line y,(z)=x, =2 given by the
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choice x, =2, k=1, for every periodic solution corresponding to points 14 in
Table I1I. Some additional bifurcation points are presented in Table III (cf. the
solution diagram in Fig. 4 [26]).

Several period-doubling bifurcation points of the Lorenz model (29) are presen-

TABLE I
Period-Doubling Bifurcation Points of Problem (28)

Point No. X X3 X4 T o
1 a 456568 1.01370 480562
b 302534 0.90140 3.14959
. 5.58827 1.61580 572439 1262766 12741
d 3.06067 0.89496 3.18858
2 a 3.12258 0.86612 326192
b 363348 0.87736 388267
c 301182 0.87130 3.13921 11.59421 122382
d 572536 1.60797 5.83894
3 a 325999 0.86603 341344
b 333969 0.86674 350115
. 2
c 301846 0.87105 3.14640 1147081 1.22556
d 5.64508 1.60500 5.78922
4 2 3.13884 0.85654 328176
b 360126 0.36378 379038
¢ 302023 0.86115 315017 11.83646 1.20614
d 557275 1.48779 575492
5 2.89396 1.34039 298738 13.60085 1.25089
6 4.19846 0.88835 444239 405146 1.17201
7 302995 0.85167 3.16255 8.52194 1.18940
8 323090 0.85069 338517 17.03632 119239
9 5.15225 113527 5.41485 3407662 119307
10 300563 0.88225 3.13062 8.54342 124307
T 3.03094 0.90653 315410 823751 1.29353
12 556151 1.61440 569636 1647603 1.29325
13 3.02443 1.08913 3.12963 489756 147021
14 520789 1.56382 533925 979634 1.46909
15 521049 1.56643 534122 19.59387 1.46882
16 449352 1.00470 473403 1801466 1.24686
17 402058 0.88784 424570 20.87305 1.20131
18 5.56447 147919 574906 23.67249 1.20668

Note. Values k=1 and x, =2 have been fixed. The numbering of the points is the same as in Figs. 3
and 4. Points 1-4 are on an isolated branch of periodic solutions, see Fig. 3; each point is presented in
four different forms (a—d) to demonstrate that the course of y,(z), ze [0, 1), has four intersections with
x; =2. On the other hand, only one representation of points 5-18 (cf. Fig. 4) is presented.
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6.2

1.20 122 1.24 1.26 &

FiG. 3. The solution diagram of periodic solutions of {28) in dependence on the parameter a. 4, is
the amplitude of y,. Points of period-doubling bifurcation are denoted by (=), the numbers agree with
Table II1. (——) isolated dependence of periodic solutions with the period T= 11-13. {(~—-) branches of
periodic solutions with the double period T'= 22-26.

ted in Table IV. These points have been successfully computed by the aid of all four
algorithms. Results in the table correspond to a cascade of period-doubling bifur-
cations (cf. Fig. 5 [23]). The values of the parameter r at the individual bifurcation
points form a Feigenbaum sequence {r;} [13]. The values

¥, —r

S o=t i1 (313
! Fiv1— 8
" T T T T
| 1.2 1.3 1.4 1.5 «

e

1.2 1.3 1.4

FiG 4. The solution diagram of periodic solutions of (28). 4, is the amplitude of y,. Poinis of
period-doubling bifurcation are denoted by (+) and numbered according to Tabie ITL. ( ) stable,
(- —-) unstable.
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TABLE 1V
A Cascade of Period-Doubling Bifurcation Points in the Lorenz Model (29)

J (2); (x3); 7 ri 9

1 20.90946 273.34849 0.30618 356,93391

2 16.85987 246.64055 0.63009 338.06197 4.9740
3 21.19530 259.36006 1.26750 334.26789 4.7313
4 17.29002 24499724 2.53818 333.46599 4.6824
5 17.24223 244.70901 5.07771 333.29472 4.6707
6 17.25889 244.74356 10.15599 333.25806

Note. Values k=1 and x; = 3.82038 have been fixed, r is considered as the bifurcation parameter «,

r; is the bifurcation value on the jth branch of the cascade (cf. Fig. 5). 5 , is defined by Eq. (31).

are presented in Table IV, too. We observe very good convergence to a limit, which

is approximately 6% ~4.6692 [13].

A success of individual algorithms in dependence on initial guesses for the model
(28), i.e., the Brusselator model, is studied in [27]. Initial guesses are generated
randomly from given intervals and all four algorithms are compared for the same

TABLE V

Period-Doubling Bifurcation Points in
the Nonautonomous Problem (30), A=2, B=6, 0 =3

m Point No. Xy X5 o
1 1 1.71831 2.82302 0.85929
2 1.07223 3.19165 1.67532
2 3 0.90362 4.84987 0.49000
4 1.19253 5.43587 1.08628
4 5 0.94915 4.71126 0.49267
6 0.57548 4.18641 0.79980
7 0.95978 3.59215 0.87795
8 0.86297 3.54160 1.08437
6 9 0.95481 4.71471 049518
10 2.35876 2.86705 0.69611
11 1.93724 2.75792 0.81108
12 0.79190 6.60985 0.81895
13 0.86362 6.04998 0.91460
14 479358 1.28787 0.92512
15 3.19709 3.19230 097113
16 1.28865 5.42704 1.08228
7 17 0.74489 4.64816 0.44548
18 1.36023 3.11399 0.67755

Note. The points are numbered in agreement with Fig. 6.
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300 320 340

360 r

FiG. 5. A cascade of period-doubling bifurcations in the Lorenz model (29) and r is considered as
the bifurcation parameter o. For numerical values see Table IV. 4, is the amplitude of y,, (~——) stable,
{(——~) unstable.

guesses (a random choice of v, is used for Algorithm IV). Generally speaking, all
four algorithms are comparable. However, we can obtain different solutions by
using different algorithms, because a large number of solutions exist in the model
(28) (cf. Table I11). Algorithm IV can sometimes be less successful because of a bad
guess of v; (we have no information about their values in advance).

Aqk
J 100 m=6
Ve
sl WS
J AL NENN
L e 13N
5 16

ST - A
)
s ; ::\;\\
| =4
,/ \\
l— // m_=’2) _______ ‘:8
5¢,-~
4 m\zv/
F \\n\w_Z ////"2
\\\ :/1/,/’
. T
21» \\ ,/’/
N -
I S
] =7
e L 1 ) 1 2
0.4 06 0.8 10 12 14 16 8 « 2.0

FiGg. 6. The solution diagram of m-periodic solutions of the nonautonomous system (30). 4=2,
B=6, w=13 (T=2.094395). Points of period-doubling bifurcation are denoted by (+«) and numbered in
agreement with Table V. (——) stable, (—— -) unstable. (Erratum: o o,ye = @ — 0.1 for m =7 curve.)
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Some resulting period-doubling bifurcation points of the nonautonomous
problem (30) are presented in Table V. The solution diagram of periodic solutions
is shown in Fig. 6 [28], the period-doubling bifurcation points (on the branches
with m=1,2,4,6,7) are denoted in the figure. We can obtain the solutions for
m =2 twice because of a 7-shift (generally m-times) if we plot x, in dependence on
the values of the parameter.

Note that the presented algorithms compute bifurcation values of the parameter
to very high accuracy (depending on the accuracy of the integration routine used
and the round-off errors of the computer).

5. CONCLUSIONS

Four algorithms for evaluating period-doubling bifurcation points presented in
this paper can be easily used for most autonomous nonlinear dynamic system of
low order, say n < 20. The use of the algorithms is limited by the applicability of the
shooting method. If the initial value problems are unstable, i.e., there are multipliers
of the order 10° or higher, the integration, and thus the simple shooting method,
usually fails. Multiple shooting methods could be used in such cases. A simple
modification of Algorithms I and IV presented in the paper can be used when we
have a nonautonomous system with periodic right-hand sides {cf. Example 3). Con-
vergence properties of the algorithms are good, moreover, results from a con-
tinuation algorithm can be used as good initial guesses for the Newton method.
Starting points on emanating branches of solutions used for the continuation
algorithm can be determined [29] after evaluation of the period-doubling bifur-
cation point.
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